Resistor R6 holds the input resistance at about 50 Ω, which is the normal value in measurement techniques. It ensures that the effects of long coaxial cables on the signal are negligible. If the converter is used in a circuit with ample limits, R6 may be omitted, whereupon the input resistance rises to 300 Ω.
Monday, September 30, 2013
Resistor R6 holds the input resistance at about 50 Ω, which is the normal value in measurement techniques. It ensures that the effects of long coaxial cables on the signal are negligible. If the converter is used in a circuit with ample limits, R6 may be omitted, whereupon the input resistance rises to 300 Ω.
Sunday, September 29, 2013
For an NTSC signal, these pulses are 16.66ms apart, corresponding to the 60Hz field rate, while for a PAL signal they are 20ms apart, corresponding to the 50Hz field rate. The vertical sync pulses are fed into IC2a, the first of two dual retriggerable monostable multivibrators in the 74HC123A. IC2a has a period of very close to 17.9ms, set by the 200kO resistor and 0.22µF capacitor at pins 14 & 15. Because the monostable is retriggerable, NTSC sync pulses arriving every 16.66ms will keep its Q output, at pin 13, high.
However, the pulse train from a PAL signal will constantly retrigger it, so its Q output will remain high. The period of IC2b also effectively makes it a low-pass filter which removes spurious switching due to any input glitches. The output signal is taken from the Q-bar (inverted) output, so that an NTSC signal gives a high output, while PAL gives low. For the particular application for which the circuit was developed, diode D1 and the resistor network shown drive the base of an NPN switching transistor and relay. A dual-colour 3-lead LED can also be fitted to indicate NTSC (red) or PAL (green). Note that with no video input, the output signal is high and will indicate NTSC.
Saturday, September 28, 2013
The video amplifier in the diagram is a well-known design. Simple, yet very useful, were it not for the ease with which the transistors can be damaged if the potentiometers (black level and signal amplitude) are in their extreme position. Fortunately, this can be obviated by the addition of two resistors. If in the diagram R3 and R4 were direct connections, as in the original design, and P1 were fully clockwise and P2 fully anticlockwise, such a large base current would flow through T1 that this transistor would give up the ghost.
Circuit diagram:
Video Amplifier Circuit Diagram
Moreover, with the wiper of P2 at earth level, the base current of T2 would be dangerously high. Resistors R3 and R4 are sufficient protection against such mishaps, since they limit the base currents to a level of not more than 5 mA. Shunt capacitor C4 prevents R4 having an adverse effect on the amplification.
Author: L.A.M. Prins - Copyright: Elektor Electronics
Friday, September 27, 2013
A resistor in series with the LEDs produces a voltage drop that depends on the current through the LEDs. This voltage is compared inside the IC to a 1.25-V reference value, and the current is held constant at 18.4 mA (1.25 V ÷ 68 Ω). The IC used here is one of a series of National Semiconductor ‘simple switchers’. The value of the inductor is not critical; it can vary by plus or minus 50 percent. The black Newport coil, 220 µH at 3.5 A (1422435), is a good choice. Almost any type of Schottky diode can also be used, as long as it can handle at least 1A at 50V. The zener diodes are not actually necessary, but they are added to protect the IC. If the LED chain is opened during experiments, the voltage can rise to a value that the IC will not appreciate.
Resistors:
R1 = 1kΩ2
R2 = 68Ω
Capacitors:
C1 = 100µF 16V radial
C2 = 680nF
C3 = 100µF 63V radial
Inductors:
L1 = 200µH 1A
Semiconductors:
D1 = Schottky diode type PBYR745 or equivalent
D2-D5 = zener diode 10V, 0.4W
D6-D15 = white LED
IC1 = LM2585T-ADJ (National Semiconductor)
Thursday, September 26, 2013
A notch for a narrow frequency band of a few per cent or even less normally requires close-tolerance components. At least, that’s what we thought until we came across a special opamp IC from Maxim. In filters with steep slopes, the component tolerances will interact in the complex frequency response. This effect rules out the use of standard tolerance components if any useful result is to be achieved. The circuit shown here relocates the issue of the value-sensitive resistors that determine the filter response from ‘visible’ resistors to ready available integrated circuits which also make the PCB layout for the filter much simpler. The operational amplifiers we’ve in mind contain laser-trimmed resistors that maintain their nominal value within 1‰ or less. For the same accuracy, the effort that goes into matching individual precision resistors would be far more costly and time consuming. The desired notch (rejection) frequency is easily calculated for both R-C sections shown in Figure 1.
Figure 1. Special opamps incorporating laser-trimmed resistors.
Dividing the workload:
The circuit separates the amplitude and frequency domains using two frequency-determining R-C networks and two level-determining feedback networks of summing amplifier IC2, which suppresses the frequency component to be eliminated from the input signal by simple phase shifting. IC1 contains two operational amplifiers complete with a feedback network. The MAX4075 is available in no fewer than 54 different gain specifications ranging from 0.25 V/V to 100 V/V, or +1.25 V/V to 101 V/V when non-inverting. The suffix AD indicates that we are employing the inverting version here (G = –1). These ICs operate as all-pass filters producing a phase shift of exactly 180 degrees at the roll-off frequency f0. The integrated amplifier resistors can be trusted to introduce a gain variation of less than 0.1 %.
They are responsible for the signal level (at the notch frequency) which is added to the input signal by IC2 by a summing operation. However, they do not affect the notch frequency proper — that is the domain of the two external R-C sections which, in turn, do not affect the degree of signal suppression. In general, SMDs (surface mount devices) have smaller production tolerance than their leaded counter-parts. Because the two ICs in this circuit are only available in an 8-pin SOIC enclosure anyway, it seems logical to employ SMDs in the rest of the circuit as well. Preset P1 allows the filter to be adjusted for maximum rejection of the unwanted frequency component.
Figure 2. This deep notch is within reach using just 5%-tolerance resistors and 20%-tolerance capacitors.
R-C notch filter:
Using standard-tolerance resistors for R1 and R2 (i.e., 1%, 0806 style) and 10%-tolerance capacitors for C1 and C2 (X7R ceramic) an amount of rejection better than that shown in Figure 2 may be achieved. The notch frequency proper may be defined more accurately by the use of selected R-C sections. Pin 3 of IC2 receives a signal that’s been 90-degrees phase shifted twice at the notch frequency, while pin 1 is fed with the input signal. These two signals are added by way of the two on-chip resistors. IC2 is a differential precision operational amplifier containing precision resistor networks trimmed to an error not exceeding ±0.2‰. Here, it is configured as a modified summing amplifier with its inverting input, pin 2, left open.
For frequencies considerably lower than the resonance frequency f0 = 1 / (2 π R C) the capacitors present a high impedance, preventing the inverting voltage followers from phase-shifting the signal. At higher frequencies than f0, each inverting voltage follower shifts its input signal by 180 degrees, producing a total shift of 360 degrees which (electrically) equals 0 degrees. The phases of each all-pass filter behave like a simple R-C pole, hence shift the signal at the resonance frequency by 90 degrees each. The three precision amplifier ICs can handle signals up to 100 kHz at remarkably low distortion. The supply voltage may be anything between 2.7 V and 5.5V. Current consumption will be of the order of 250µA.
Source : www.extremecircuits.net
Wednesday, September 25, 2013
Output AA switches transistor T1, which drives the right-hand motor. The light-dependent resistors can be attached on the left and right sides of the vehicle, or at the front and rear. This causes the robot to turn to the right, due to the motor on one side being stopped, until the desired lighting relationship is restored. The vehicle will then continue to travel in a straight line until the lighting relationship again changes, at which point it will again turn, and so on. You can experiment with various behaviour patterns by using the other outputs of the window discriminator. If a transistor is provided for each of the AU and AO outputs of the TCA965, the robot can be made to travel toward or away from a light source, depending on the connections.
Using the window discriminator, the robot will operate under the rules of a three-point controller (left, straight ahead, or right). If you fit the light-dependent resistors in a box under the vehicle together with a light source, you can try to have the robot follow a black line on a white background. A reflective IR sensor enables the robot to respond to obstacles. This not as simple as it might seem, since the Sharp IS471 operates the IR LED with pulsed light and uses sophisticated detection processing. When an obstacle is detected, the output (pin 2) goes Low and blocks transistor T2. This causes the motor to stop, and the vehicle will rotate about the stationary wheel until the obstacle is no longer in its path.
The sensitivity of the IS471 can be set using P3. As its range is only around 10–15 cm, the vehicle must not travel too quickly, since otherwise it will not be able to avoid obstacles in time. This part of the circuit is also open for experimentation. If a relatively large and fast robot requires an obstacle detector (or isn’t fitted with the IS471), an ultrasonic detector can also be used. Suitable complete construction kits are available from Conrad, for example. You can also fit a suitable mechanical push-button switch mounted on a flexible rod. The obstacle detector can also drive a warning buzzer or a lamp; the circuit leaves lots of room for your own ideas. The circuit works over a wide range of supply voltages from 4.5 to 16 V.
If larger motors are used, transistors with increased power-handling capacity and heavier batteries are necessary. The author connected two 4.8-V rechargeable batteries in series and used BC388 transistors as drivers for Lego micro-motors. You can build the robot entirely according to what you have in your parts box. The mechanical elements can also be freely selected, but they partially determine the behavior and operation of the robot. The author’s robot is made from a Lego chassis with a prototyping board holding the circuitry attached using elastic bands. The motors are fitted on the left-hand and right-hand sides. The third wheel at the front can turn freely.
One problem must be mentioned: if an obstacle is detected while an incorrect lighting relationship is present, the vehicle remains standing. In this case, a bit of logic could be added to cause both motors to rotate in reverse. However, that would require directional switches for the motors or motor driver ICs (L293D). The simple circuit would become more complicated and larger, and at some point you would end up using a microcontroller after all - but that’s just the point of the story.
Tuesday, September 24, 2013
Instead of in series with the input, the resistor R can be connected between pins 1 and 2 of the IC if the load is constant. You can see this in the right figure. This will make some part of the load current flows through the resistor and the other part through the device.
Monday, September 23, 2013
Sunday, September 22, 2013
This circuit drives a motor clockwise / anticlockwise via a pot and reduces the speed to zero when the pot is in mid-position. The current is limited to 200mA and the voltage across the motor is less than 6v, but the circuit shows the principle of Pulse Width Modulation (providing powerful bursts of current to the motor to create a high or low RPM under load) and both forward/reverse RPM via the H-bridge arrangement.
Circuit diagram:
Up/Down Fading LED Circuit diagram
Source : 50-555Circuits
This circuit disables an alarm clock on Saturdays and Sundays when people like to sleep in but enables normal operation on Mondays to Fridays so that people rise in time for work or school. The core of the circuit is a 4017 decade counter which acts as the day counter and it is used in conjunction with a desk clock which acts the alarm and a watch module with alarm function which provides one clock pulse very day to the 4017. In operation, the watch module feeds a day pulse via transistor Q3 to the clock input of IC1. This has seven outputs connected via day switches (S1-S7) and diodes D3-D9 to Q1 which disables the alarm signal to the speaker via transistor Q2. LEDs1-7 indicate the actual day (if you forget!).
Circuit diagram:
Alarm Clock With Day Selector Circuit Diagram
To set the system, set the desk clock for the correct time and for the desired alarm time (eg, 6’o’clock). The watch module is set to the correct time and its alarm set to midnight. The day counter, IC1, is set to the correct day, as indicated by the LEDs, by pushing switch S12 and closing switch S8 or S9. S8 is normally left open to conserve the battery by leaving the LEDs off. As shown on the circuit, switches S1-S7 are set to sound the alarm on Mondays to Fridays and disable it on Saturday and Sunday. However, you can change the days to suit your work habits.
Author: Rasim Kucalovic - Copyright: Silicon Chip Electronics
Saturday, September 21, 2013
1963 Dodge Dart Electrical Wiring Diagram |
Thursday, September 12, 2013
Wednesday, September 11, 2013
Tuesday, September 10, 2013
Doorbell Circuit Diagram
Wednesday, September 4, 2013
In the deactivated state, the relay contacts are arranged so the 1000 uF capacitor will charge to about 2.7 volts. When the switch is closed, the capacitor voltage is applied to the transistor base through a 560 resistor causing the transistor to turn on and activate the relay. In the activated state, the relay contacts are arranged so the 3.3K resistor and 560 ohm resistor provide a continous current to the transistor base maintaining the activated state. While in the activated state, the capacitor is allowed to discharge to zero through the 1K resistor. When the switch is again closed, the capacitor will cause the transistor base to move toward ground deactivating the relay.
Single Transistor Relay Toggle Circuit Diagram
The circuit has three distinct advantages, it requires only a few parts, always comes up with the relay deactivated, and doesnt need any switch debouncing. However since the capacitor will begin charging as soon as the button is depressed, the button cannot remain depressed too long to avoid re-engaging the relay. This problem can be minimized with an additional resistor connected from the transistor base to ground so that the base voltage is close to 0.7 volts with the button depressed and the transistor is biased in the linear region. With the button held down, the relay coil voltage should be somewhere between the pull in and drop out voltages so that the relay will maintain the last toggled state.
This worked out to about 820 ohms for the circuit I built using a 12 volt, 120 ohm relay coil and 2N3053 transistor. Temperature changes will effect the situation but the operation is still greatly improved. I heated the transistor with a hair dryer and found that the relay will re-engage with the button held down for approximately 1 second, but this is not much of a problem under normal operation.
Tuesday, September 3, 2013
Switching Power Supply Circuit diagram
SW Receiver Using MK414 Circuit Diagram
Notes:
The original data sheet for the MK414 states a maximum working frequency is around 4 MHz. SW transmissions are so powerful that this receiver will work well with signals up to about 6 or 7 MHz. The 10k resistor controls the operating voltage for the IC which is critical for good performance.
Coil Details:
The tuned circuit consists of a variable capacitor and fixed air spaced coil. For the coil, I wound between 10 and 20 turns of wire on an empty tube of around 1.5 inches diameter. The turns were spaced so that the overall length was around 3 inches. The variable capacitor tuned 0 - 300 pF but there is plenty of scope for experiment here. One final point, you will need an external antenna to receive broadcasts. I have an outside wire that is about 7 meters long and this was quite effective. The antenna can be connected at either end of the coil or via a series capacitor value between 10pF and 100pF.
Monday, September 2, 2013
Description
Source http://www.electronics-lab.com/
Sunday, September 1, 2013
Voltage Rating Tester for Zener Diode Circuit Diagram
Using a single 555 Timer IC and a small transformer to generate a high voltage, this circuit will test zener diodes of voltage ratings up to 50VDC. The 555 timer is used in the astable mode, the output at pin3 drives a small audio transformer such as the LT700. This has a primary impedance of 1K and a secondary impedance of 8 ohms. Used in reverse the unloaded ac voltage is around 120volts ac. This is rectified by the 1N4004 diode and smoothed by the 2.2u capacitor which MUST be rated at 150 VDC. The zener under test is measured with a multimeter set to DC volts as shown. The load current switch enables the zener to be tested at 1 or 2mA DC. The rectified DC load, but a good zener should maintain the reading on the volt meter.